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Motivation

[-10 Washout in California, 2015
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Direct and Indirect Pathways of Disruption

Flint Water Crisis, 2014 - PHYSICAL

Atlanta Snowstorm, 2014

DIRECT

INDIRECT

LossS ¢

(Markolf et al., 2019) NON-PHYSICAL
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SOCIAL
COMPONENTS

SETS as a lens for identifying
lock-in" and analyz

° Rules, Codes, & Regulations
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n O I Ca Financial Mechanisms
g g Governance
System Users & Operators
Employment

interdependencies =

Community Members/Groups
Behavior & Decision Making
Morals, Beliefs, & Values

Lock-in — Constraints on infrastructure today as a
result of past decisions and actions — even in light
of new operating conditions or alternatives

Air Quality Water Systems

Water Quality Transportation Systems

Soil Quality Buildings

Ecosystem Health Industrial Systems

Natural Resources Cyber/virtual Systems
PHYSICAL Biodiversity Planning Systems

Weather/Climate Effects (e.g., demand forecasting, etc.)
Wildlife Habitat Energy Systems

Ecological Services ICT Systems

Land Use Practices Management Systems

INDIRECT

ECOLOGICAL
Non-Physical . .
w _ _ _Ecological-Technological _ _ _y
NON-PHYSICAL Interactions (Markolf et al., 2018)
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1. Unpredictability/variation inriver leads
to desire to intervene/”control”

8.
2. Dams, levees, locks, etc. are installed to
E create more “control”/predictability
T MID-WEST FLOODING 2019 3. Dams, levees, locks, etc. lead to altered
- B _ ecosystems

4. Dams, levees, locks, etc. lead to
increased perception/assumption of
“control”/predictability

5. Increased perception of “control” leads
to more growth/development coupled
with increased fortification

6. Additional developmentfurther alters
ecosystems

7. Re-fortification leads to increased
perception of “control”

8. Ecosystem variation & tendency to
~ ,’ return to ‘steady state’ results in

- potential major disruption
y =
(Markolf et al., 2018) o L -
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1. Sealevelrise contributesto more frequent and
troublesome tidal flooding

2. Concerns over King Tide flooding lead to
elevation of certain roadways and installation
of pumping stations

6.
= MIAMI BEACH TIDAL FLOODS

A B 3. A) Untreated water from pumpingstations has
| negative effects on water quality in Biscayne

Bay

B) Elevated roadways contribute to
increased flooding at commercial properties
during precipitation events

4. Importance of Biscayne Bay to tourism/local
economy leads to concerns over water quality

5. Social importance of clean water in Biscayne
Bay leads to retrofitting of pumping stations
with water filtration systems

6. Installation of water treatment systems helps
(Markolf et al., 2018) address water quality concerns
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Evolving Direct and Indirect Pathways of Disruption

PHYSICAL

A T T R |

DIRECT || - i L S U | INDIRECT

gnaling

vears engulfed Ellicott City. Here’s how it
happened. S—

| NON-PHYSICAL

(Markolf et al., 2019)
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Conclusions

* Protecting one infrastructure sector without considering its interactions with
other systems can result in unaddressed vulnerabilities
« Moving forward, indirect and non-physical pathways also warrant consideration/analysis

« How we traditionally protect infrastructure may be insufficient for the future

= |ssues like climate non-stationarity, complex & interconnected systems, and human
behavior & decision making can limit the effectiveness of robustness

[ Connectivity RESILIENCE
Rebound
Modularity Decentrallzatlon S~
ADAPTIVE CAPACITY [y Robustfiess
Culture of Change Extensibility f

} [ Compatlblllty ~

ustained Adaptabilit
[ Multi-

functionality

[ and Learning

(Bernardes & Hanna, 2009; Richards, 1996; Chester & Allenby, 2017; Woods, 2015; Seager et al., 2017)
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